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Fourth Edition ( 2018 McGraw-Hill) 

Chapter 3  
 
 

3.1 Photon energies in the visible and UV ranges 

a. The human eye can typically see light in the wavelength range from around 400 nm  (violet) to 

roughly 700 nm (red). What is the range of photon energies (in eV)? 

b. The UV (ultraviolet) spectrum typically ranges from 100 nm to 400 nm. What is the photon energy 

range? 

c. UVA, UVB and UVC correspond to wavelengths 100 – 280 nm, 280 – 315 nm and 315 – 400 nm 

respectively .What are the corresponding photon energy ranges? 

Solution 

Given: = violet = 400 nm, the corresponding photon energy Eph is, 
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E = 3.10 eV 

We can calculate the photon energies corresponding to other wavelengths and build a table as in Table 
3Q01-1. 
 
Table 3Q01-1: Photon energies for different wavelength spectra 

 Wavelengths Eph (eV) Definition of spectral range 
a. = 400 – 700 nm 3.10 – 1.77 Visible range of the eye from violet to red 

b. = 100 – 400 nm 12.4 – 3.10 UV spectrum 

c. = 100 – 280 nm 12.4 – 4.43 UVA 

c. = 280 – 315 nm 4.43 – 3.94 UVB 

c. = 315 – 400 nm 3.94 – 3.10 UVC 

 

 

3.2 Photons and photon flux 

a.   Consider a 1 kW AM radio transmitter at 700 kHz. Calculate the number of photons emitted fro-m 
the antenna per second. 

b.   The average intensity of sunlight on Earth's surface is about 1 kW m2. The maximum intensity is at 
a wavelength around 800 nm. Assuming that all the photons have an 800 nm wavelength, calculate 
the number of photons arriving on Earth's surface per unit time per unit area. What is the magnitude 
of the electric field in the sunlight? 
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Table 3.6 

 0 45 90 135

(nm) 0.0709 0.0715 0.0731 0.0749 

(nm) 0  0.0006  0.0022 0.004 

 

 

Figure 3Q09-1 

 
Figure 3Q09-1 shows  vs. 1 – cos with the best line forced through zero (why?). The slope is 

0.00230 nm. 
The slope from Figure 3Q09-1 is 0.002309 m, which, from Equation (6b), is given by 
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   h =  J s (or kg m2 s1) 

Experimental discrepancy = 100(6.626 – 6.281)/6.626 = 5.2% 

Note: In addition to experimental errors, as we will see in Chapter 4, the electron inside a solid does not 
have its mass in vacuum – it has an effective mass. me above should be the electron effective mass. 

 

3.10 Photoelectric effect  A photoelectric experiment indicates that violet light of wavelength 420 nm 
is the longest wavelength radiation that can cause photoemission of electrons from a particular multialkali 
photocathode surface. 
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a.   What is the work function of the photocathode surface, in eV? 

b.  If a UV radiation of wavelength 300 nm is incident upon the photocathode surface, what will be the 
maximum kinetic energy of the photoemitted electrons, in eV? 

c.  Given that the UV light of wavelength 300 nm has an intensity of 20 mW/cm2, if the emitted 
electrons are collected by applying a positive bias to the opposite electrode, what will be the 
photoelectric current density in mA cm2 ? 

Solution 

a. We are given max = 420 nm.  The work function is then, 

   = hfo = hc/max = (6.626  1034 J s)(3.0  108 m s1)/(420  109 m) 

   = 4.733  1019 J or 2.96 eV 

b. Given  = 300 nm, the photon energy is then: 

  Eph = hf = hc/ = (6.626  1034 J s)(3.0  108 m s1)/(300  109 m) 

  Eph = 6.626  1019 J = 4.14 eV 

The kinetic energy KE of the emitted electron can then be found: 

  KE = Eph = 4.14 eV - 2.96 eV = 1.18 eV 

c. The photon flux ph is the number of photons arriving per unit time per unit area. If Ilight is the light 
intensity (light energy flowing through unit area per unit time) then, 
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Suppose that each photon creates a single electron, then 

  J = Charge flowing per unit area per unit time = Charge  Photon Flux 
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eJ  = 48.4 A m2 = 4.84 mA cm2 

 

 

3.11  Photoelectric effect and quantum efficiency  Cesium metal is to be used as the photocathode 
material in a photoemissive electron tube because electrons are relatively easily removed from a cesium 
surface. The work function of a clean cesium surface is 1.9 eV. 

a.   What is the longest wavelength of radiation which can result in photoemission? 

b.   If blue radiation of wavelength 450 nm is incident onto the Cs photocathode, what will be the 
kinetic energy of the photoemitted electrons in eV?  What should be the voltage required on the 
opposite electrode to extinguish the external photocurrent? 

c.   Quantum efficiency (QE) of a photocathode is defined by, 



Solutions to Principles of Electronic Materials and Devices: 4th Edition (27 April 2017) Chapter 3 
 

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of 
McGraw-Hill Education. 

 

 

Figure 3Q13-5  Plot of y = I/IT versus in microns. 
Maximum at around 480 nm.  

RED, T = 2700 K 

 

Figure 3Q13-6  Plot of y = I/IT versus in microns. 
Maximum at  around 1.07 m. 

BLUE, T = 6000K 

 

2. We can link this problem to Question 3.15. The 40 W light bulb there has a tungsten filament, which is 
0.381 m long and has a diameter of 33 µm. Surface area of the filament S = 2π(D/2)L = 2π × (33/2)×106 
m × 0.381 m = 3.950 × 105 m2. Roughly, 40 W of electrical inout is radiated away. The emissivity of the 
tungsten surface is 0.35 which means it is a factor of 0.35 of the equivalent black body at the same 
temperature. Thus the black body would be emitting a total intensity of 
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which is very close to the It ( = 3.0×106  W m2) we calculated at 2700 K. The answer to Question 3.15, 
by the way, is 2700 K. 

 

3.14 Wien’s law The maximum in the spectral intensity distribution of black body radiation depends on 
the temperature. Substitute x = kT/hc in  Planck’s law in Equation 3.9 and plot it as a function of x and 
find max which corresponds to the peak of the distribution, and hence derive Wien’s law. Find the peak 
intensity wavelength max for a 40 W light bulb given that its filament operates at roughly 2400 C. 

Solution 

Let,  hckTx /  
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where   C = 2(kT)5/h4c3.        (2) 

Obviously C depends on kT but x in Equation 1 is essentially a variable that depends on  At T = 2400 
C, in SI units,  

  C = 8.31010 W m3 = 83 W mm3 
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The units of C imply that it represents watts of radiation power emitted per m2 of surface area and per m 
of wavelength interval; remember I is the radiation intensity in the interval. We have normalized 
the variable by dividing by hc/kT and assigning a variable x to this new normalized quantity. The 
constant C does not affect the shape of the function in x in the right hand side of Equation (1).  Figure 
3Q14-1 shows the plot of I vs. x with C = 83 W mm3. The maximum is at x = xmax = 0.20. We can easily 
demonstrate that xmax does not depend on the temperature. Figure 3Q14-2 shows the plots of I vs. x with 
C = 83 W mm3 and with C = 0.083 W mm3 on log-log axes. It is clear that xmax = 0.2, does not depend 
on C and hence T. 

 

Figure 3Q14-1:  Plot of I versus x with C = 83 W mm3 

 

Figure 3Q14-2:  Log-log plots of I versus x for two values of C: Upper, C = 83 W mm3 (BLUE), lower, C = 
0.083 W mm3 (RED)  

 

At peak intensity, xmax = 0.20 (see Figures 3Q14-1 and 3Q14-2)  

  maxkT/ hc  0.20 

   (1.38×1023 JK1)(maxT) / (6.626×1034 Js)(3×108 ms1) = 0.20 

  maxT = 2.88×10 m K 

Given T = 2400 C, we have 

  max = 2.88×103 m K/T = 2.88×103 m K/2673 K = 1.07×106 m = 1.07 µm 
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This is the maximum in the spectral intensity I vs. wavelength curve.  

Note: The peak wavelength max = 1.07 m is not the same wavelength where the spectral intensity 
(intensity per unit frequency) in the frequency domain peaks; the latter is at a photon energy of 0.65 eV 
(See Question 3.13). 

ADDENDUM 

It is possible to get an analytical solution for the maxT product by differentiating I and setting it to zero. 
Consider differentiating I, and setting it to zero. 

 

We can simplify this further and set it to zero to find the corresponding x at this point, that is, to find x = 
xmax where dI / d = 0. 
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The slope gives the electron's wavelength. Next we calculate the expected De Broglie wavelength DB of 

the electron (behaving as a wave) when the electron has been accelerated by a 10 kV anode voltage, that 

is KE = 10 keV. From Equation 3.16, we have 
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      DB = 0.0122 nm 

The discrepancy or the difference is 3.9% 

 
*3.17 Electron microscope Diffraction of light by an object becomes important when the wavelength of 
light is comparable to the object we wish to see. The resolution of an optical microscope cannot therefore 
be better than the wavelength of visible light, on the order of 500 nm. An electron microscope uses an 
electron beam (just like light) to "see" small objects because we can make the wavelength of an electron 
beam very short by adjusting the accelerating voltage. The transmission electron microscope (TEM) is an 
equipment that allows examining thin slices (or films) of materials under very large magnifications, for 
example100,000× or more. As depicted in Figure 3.52, the image formation is exactly the same as that in 
the optical microscope except that electromagnetic coils acting as electron lenses are used to bend the 
electron ray.  Electrons emitted by the hot cathode are accelerated by the anode which has typically a 
large voltage such as 100 kV applied to it with respect to the cathode. After passing through the anode, 
the electrons are collimated into a parallel beam by the condenser lens to be transmitted through the thin 
sample. An objective lens focuses the transmitted beam onto an intermediate image which is then 
projected on to a fluorescent screen by the projector lens. The whole apparatus operates under vacuum to 
avoid collisions of electrons with air molecules. The samples are typically less than 100 nm thick.  
a.  Do you need the wave properties of the electron to explain the operation of the electron 
microscope? (Explain your answer and consider whether you need interference and diffraction of waves 
to explain the optical microscope).   
b. If the operating voltage of a transmission electron microscope is 100 kV, what is velocity of the 
electrons and their wavelength? (Neglect relativistic effects.) 
c. Diffraction effects are negligible when the size of the object d is much greater than the 
wavelength  of the wave. For example, the Bragg diffraction condition has no solutions when 2d > .   
Resolution is therefore comparable in magnitude to the wavelength .  What is the theoretical resolution, 
in order of magnitude, of the electron microscope operating at 100 kV and 300 kV? What do you think 
limits the resolution in practice?         
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Soluti
on 

a.   
The 
operati
on of 
an 
optical 
micros
cope 
can be 
explain
ed very 
simply 
by 
using 
geoteri
c 
optics, 

that is, representing light in terms of rays, which are then bent by lenses. Geometric optics works well 
when we can neglect the intereference and diffraction of light waves, that is when the light wavelength 
() is much greater than the object features (say d) or  > d. Similarly, we can explain the operation of an 
electron microscope treating the electron as a particle moving along a trajectory, i.e. along a line. The 
trajectory is bent by electrogmatic lenses just as rays are bent by lesnes. We do not need intereference or 
diffraction to explain the basic principle of operation and the origin of magnification.  

We do however need the wave nature of the electron to explain the resolution of the electron microscope. 
Once the object feature becomes small, waves can be diffracted. Bragg's diffraction law 2dsin =  (for 
first order) shows that diffraction cannot occur whenever sin > 1 or whenever /2d > 1 or > 2d. Put 
diffrently, this inequality allows us to estimate the resolution limit of a microscope, whether optical or 
electron.   We cannot resolve objects of size smaller than the wavelength of light in the optical 
miscroscope or electron in the electron microscope. 

The momentum of electrons can be evaluated from the accelerating voltage V because the kinetic energy 
gained by the electrons, (p2/2me), is equal to eV.   This in turns makes it possible to adjust the 
wavelength of electrons by adjusting the accelerating voltage 

b. The voltage 100 kV (105 V) accelerates the electron to a KE equal to eV. From KE = p2 / 2me = eV, we 
have 

  p = ඥ2𝑚௘𝑒𝑉 = √2 ൈ 9.109 ൈ 10ିଷଵ ൈ 1.602 ൈ 10ିଵଽ ൈ 10ହ 

 or  p = 1.709 × 1022 kg ms1 

 The momentum p = me velectron 

 
(a) A schematic diagram of a transmission electron 
microscope. The angles of the electron trajectories with the 
optical axis are highly exaggerated; they are typically much 
less than 1
 
Figure 3.52 Transmission electron microscope 
 

(b) A Hitachi Transmission electron 
microscope (HF3300) with an 
accelerating voltage of 330 kV, 
maximum magnification of ×× 
and capable of resolving 0.13 nm. 
(Courtesy of Hitachi High-Technologies 
America Inc. 
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  velectron = p / me 

or   velectron = 1.7085 ൈ  10ିଶଶ /9.109 ൈ 10ିଷଵ = 1.876 × 108 m s1 

This velocity is actually is enormous because  

  velectron /c = 0.626 

Clearly, we cannot neglect relativistic effects as we have done in calculating velectron. 

 The wavelength  = h / p 

  = 6.626 ൈ 10ିଷସ / 1.709 ൈ 10ିଶଶ  = 3.88 × 1012 m  or 3.88 pm 

c. The 100 kV case was calculated above in b which gave  =  3.88 pm, which is an estimate of the 
theoretical resolution of this electron microscope 

The 300 kV case leads to an electron momentum given by 

  p = ඥ2𝑚௘𝑒𝑉 = √2 ൈ 9.109 ൈ 10ିଷଵ ൈ 1.602 ൈ 10ିଵଽ ൈ 3 ൈ 10ହ 

 or  p = 2.959 × 1022 kg ms1 

 The De Broglie wavelength  = h / p 

  = 6.626 ൈ 10ିଷସ / 2.959 ൈ  10ିଶଶ  = 2.24× 1012 m or 2.24 pm 

 We know that the lens aberrations can limit the resolution of an optical microscope before the 
theoretical limit is reached (d ~ ) . Similar problems arise in the electron microscope. It is not possible 
to design a perfect electromagnetic lens that can perfectly focus the electron trajectories. The bending 
ability of an electromagnet depends on the magnetic field and hence on the current, which has to be 
precisely controlled. Further, the focusing ability of an electromagnet will also depend on the velocity of 
the electrons. Not all the electrons have exactly identical velocities with a precise value. Small variations 
in electron velocities will mean different bending trajectories through the electromagnet lens; this is 
similar to chromatic dispersion in the optical microscope in which different wavelengths experience 
different amount of bending.  Last, but not least, high resolution electron microscopes have be operated 
on a vibration-free (vibration-damped) floor. The electron microscope above in the photo operates at 330 
kV but has a quoted resolution of 0.13 nm; compare with the calculation above.  

 

3.18 Heisenberg's uncertainty principle. Show that if the uncertainty in the position of a particle is on 
the order of its de Broglie wavelength, then the uncertainty in its momentum is about the same as the 
momentum value itself. 

Solution 

The de Broglie wavelength is 

  
p

h
   

where p is the momentum. From Heisenberg’s uncertainty principle we have, 

  xp  ħ 

If we take the uncertainty in the position to be of the order of the wavelength, x ~, then 
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Figure 3Q21-3: Solution of  = ktan(ka/2) (blue) and  = kcot(ka/2) (red) with intersection points in Figure 

3Q21-2 expanded. 

 
Note: Solving 
   )tan(2

1 kak  

means that we are looking for a solution, a value of E, that satisfies 

   0)tan()( 2
1  kakEf   

in which  

    
2

2 2 EVm
= oe 

  and 
2

2 2 Em
 = k e  

We can start by guessing a solution by using a value form an infinite PE well, E = E1∞, and then, by trial 
and error (e.g. using a Secant or Newton-Raphson Method), finding the solution E1. With powerful math 
software these days, graphical solutions as in Figure 3Q21-3 can be obtained quickly and allow the 
visualization of all possible solutions. 

 

3.22 Tunneling 
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a.   Consider the phenomenon of tunneling through a potential energy barrier of height Vo and width a, 
as shown in Figure 3.19. What is the probability that the electron will be reflected? Given the 
transmission coefficient T, can you find the reflection coefficient R? What happens to R as a or Vo or 
both become very large? 

b.    For a wide barrier (a >> 1), show that To can at most be 4 and that To = 4 when E = 
2
1 Vo. 

Solution 

a. The relative reflection probability or reflection coefficient R is given as the ratio of the square of the 
amplitude of the reflected wave to that of the incident wave, which is: 
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2
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R   

Also, R can be found from the transmission coefficient T by the equation R = 1 - T, as stated in Equation 
3.47. From Equation 3.43, T is given as: 
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where a is the width of the potential energy barrier,  is the rate of decay, and D is given by: 
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To determine the behavior of R as a or Vo or both become very large, we can use the equation R = 1-T to 
express R in terms of a and D (remember D is a function of Vo). 
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 We know that sinh() = , and also that 1 /  = 0. Therefore, as Vo becomes large, so does D, 
which leads to T = 0 and R = 1, meaning total reflection occurs. If a becomes large then sinh() =  and 
T = 0, making R = 1 for total reflection. 

b. We need to find the maximum value of To. Since To depends on the energy E, we can differentiate it 
with respect to E, set the result to 0 and isolate E. 
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 Thus To is maximum when E = Vo / 2. If this expression for energy is substituted back into the 
equation for To to find its maximum value (To): 
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*3.23 Three dimensional quantum well   Consider the energy of an electron in a 3D cubic PE well in 

which the electron energy is given by Equation 3.52. If we measure the energy  normalized to the E111 
level , then 

   22
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corresponding to the wavefunction in Equation 3.51 with a = b = c.   
a. Consider the case n1 = 5, n2 = 2, n3 = 1 or N2 = 30.  How many wavefunctions are there? What is 
the degeneracy of this energy level?   
b. Suppose that we wish to find the total number, that is the sum S, of all wavefunctions with 

energies less than some critical energy ′. We need all n1, n2, n3 combinations that would give 

  2
3

2
2

2
1 nnn . Consider "n-space" in which n1, n2, n3 are variables corresponding to x, y, z, and 

we take n1 along x, n2 along y, and n3 along z.  2
3

2
2

2
1

2 nnnN  represents those n1, n2, n3 values 

that give ′.  What is εzyx  222 in this n-space space? What does the volume of space in this 

sphere located so that x, y and z are all positive represent? This volume is 1/8th of the volume of the 

sphere with radius that is, S = 2/3)3/4)(8/1(   . What does this represent? If we differentiate this with 

respect to energy, dS/d′, what would we get? Can we use it to represent a density of states in energy? 
 

Solution 

Part I 

The value N2 = 30 can be obtained from (5,2,1) as well as (5,1,2), (2,1,5), (2,5,1), (1,2,5) and (1,5,2). 
There are thus six states from the combination of (5,2,1) giving six possible states, each with a distinct 
wave function , 𝜓௡ଵ௡ଶ௡ଷ. However, all these, 𝜓௡ଵ௡ଶ௡ଷ have the same energy E512 

Part II 

 2
3

2
2

2
1

2 nnnN  represents those n1, n2, n3 values that give ′.  What is  222 zyx in this n-space 

space? This is a sphere in which  

     2
3

2
2

2
1 nnn       (1) 

What does the volume of space in this sphere located so that x, y and z are all positive represent? What 
does the volume of space in this sphere located so that x, y and z are all positive represent? This volume 
represents all possible combinations of n1,n2,n3 that satisfy Equation 1. This volume is 1/8th of the 
volume of the sphere with radius that is, 


